

let's remember...

• Why do researchers (us[©]) select a sample instead of studying the entire population?

so many reasons:

- 1. Studying the entire population is usually **impractical**.
- 2. Populations can be very large, spread out, or constantly changing.
- 3. Collecting data from everyone would take **too much time**, **effort**, **and money**.
- 4. A **sample** is a smaller, manageable group selected from the population.
- 5. If the sample is **representative**, it can **accurately reflect** the population.
- 6. A sample is like a "small window" to understand the bigger picture efficiently.

Sampling

- The process of selecting members of the population to be included in the sample.
 - Research uses data obtained from
 a sample to make inferences about
 the population.

Population

- · A defined group of individuals from which (e.g., married individuals, psychology students
- The sample must reflect the population!!! Otherwise, we face the risk of sampling bias... (örnekleme yanlılığı) – not reflecting that sample or population!

Sampling =

Ideal: Including the entire population... (nüfus sayımı)

Determining a sample from the population of interest...

Adolescents, adults, prisoners, teachers...

 Good sampling allows us to make inferences about the entire population.

Statistical Theory

Sample → population

Statistical significance p < .05 - (later on)

Population/Sample (Denek)

- Each unit or individual in the population and the sample
- > N: Number of subjects in the population
- > n: Number of subjects in the sample

 Although the study is conducted on a sample, find an article that reports the number of subjects as N...

Sampling Techniques

Probability Sampling

- Simple Random Sampling equal chance of selection
- Stratified Random Sampling
- Cluster Sampling

Nonprobability Sampling

- Haphazard sampling *Ulaşılabilirlik*
- Purposive Sampling
- Quota Sampling
- Snowball Sampling

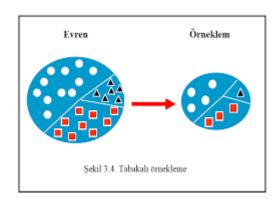
Probability Sampling

- You can determine the probability of any member of the population being included in the sample. . The best way to make inferences
 - about a population...

Probability Sampling

Simple Random Sampling

 The <u>probability of sampling</u> all individuals in the <u>population is equal.</u>

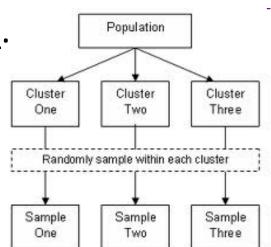

- N's are randomly selected using various methods;
 - e.g., psychology students.
- If you are interested in surveying ÇAĞ
 UNIVERSITY students, you will need a complete
 list of all students...

Probability Sampling

Stratified Sampling

Tabakalı Rastgele Örnekleme

• Dividing the population into subgroups e.g., age, gender, education level, political views.



- Random selection within strata/layers
 e.g., we want to select 9 cubes from a total of 30...
- When categorized by color (blue, green, pink) and taking 3 from each group, we get 9 cubes...

Probability Sampling Cluster Sampling Küme Örnekleme

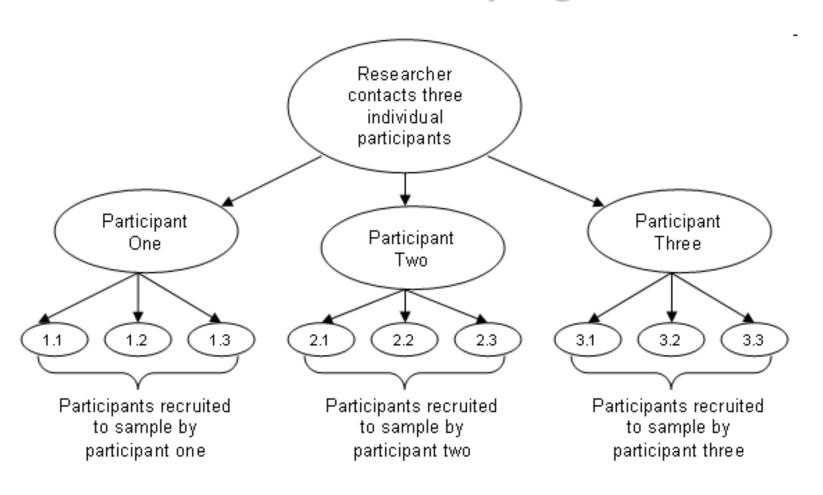
- Population lists are usually unavailable!!
- Used when you can't identify individuals.
- Randomly sample clusters of people in identifiable groups.
 - e.g., sample from each ENG102 section.
- Collect data from <u>all people within the</u> <u>sampled clusters.</u>

FARKLARI??

- <u>Tabakalı Örnekleme</u>: Alt gruplar (tabakalar) homojendir.
- Aynı tabakada yer alan bireyler benzer özelliklere sahip!!
 - Örneğin, yaş, cinsiyet ya da gelir seviyesine göre tabakalar oluşturulabilir.
- Küme Örnekleme: Kümeler heterojendir.
- Her küme popülasyonun küçük bir temsili olarak kabul edilir.
 - Küme içindeki bireyler çeşitli özellikler taşıyabilir.

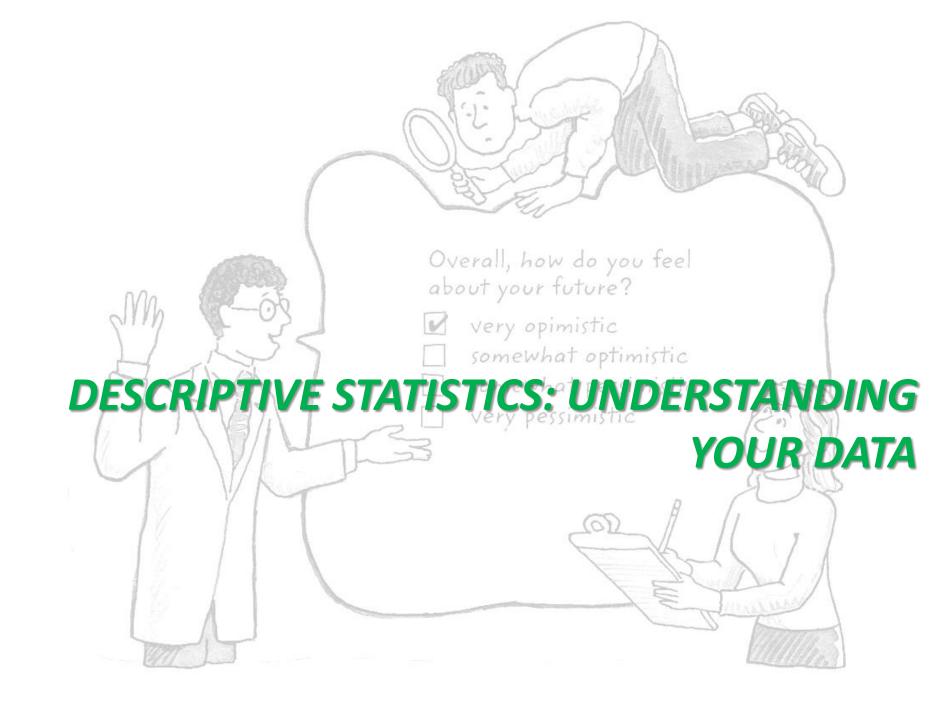
- A type of sampling procedure in which one cannot specify the probability that any member of the population will be included in the sample
- Accidental or convenience sample
- Cheap and convenient
- Introduces biases big problem when people select themselves to be part of the survey (return a magazine survey, for example)

Haphazard Sampling


- Kolayda Örnekleme (Convenience Sampling)
- Select Ss "conveniently" En kolay yol ile
- Population: ÇAĞ UNIVERSITY. Stand in front of the caféteria between 12:00 and 13:30 and ask people to participate your research.
- Disadvantages
 - Biases → e.g., you'd exclude students who eat at dorms...
 - Difficulty in sample → population (generalisation)

Purposive Sampling Amaçlı Örnekleme

- e.g., population: young theatre goers
 - Not just anyone walking towards the theatre
 - Under, say, 30 years of age.
 - Students (or who look like students)
- A smart practical way of approaching to having a good sample
- But, recall that not a probabilistic sampling process



Snowball Sampling

Sampling Frame

- Sampling frame → the actual population of
- Population: residents of Tarsus ©
- Possible sampling frames can be:
 - People who go to Kebapçı Eyüp ©

Frequency Distrubutions

- The collection of unprocessed numbers obtained through observation or recording, which have not yet been organized or made meaningful, is considered raw data.
- One of the most common methods used to organize, summarize, and make raw data meaningful and understandable is to present their frequency distributions.
- By presenting frequency distributions, scattered scores are compiled, arranged in descending or ascending order, and meaningful interpretations about the scores can be made.
- Frequency (f)

Frequency Distrubutions

Raw Data

88	74	76	60	38	65	82	28	54	68
								82	

Ranked Scores

94	82	65	54
90	76	63	42
88	74	60	38
82	68	58	35
82	67	54	28

Simple Frequency Distribution

 A simple frequency distribution is a way of organizing data that shows how often each individual value (or score) occurs in a dataset.

In this type of distribution:

- Each unique value is listed separately.
- The number of times (frequency) that each value appears is recorded.

Exmpl.: The exam scores of 15 students: 40, 50, 50, 55, 60, 60, 60, 65, 70, 70, 75, 75, 80, 85, 90.

 This is called a frequency distribution — it shows how many times each value is repeated.

Let's write down SFD table!

Grouped Frequency Distribution

- When the data set is large or the values vary widely, listing every single value separately becomes impractical.
- In such cases, the data are **grouped into intervals (classes)**, and the **frequency** of each interval is shown.
- Helps us see the overall pattern of the data more easily and summarize large data sets in a simple and understandable way.

Score Range	Frequency (f)
40–49	1
50–59	3
60–69	4
70–79	4
80–89	2
90–99	1

The Range (ranj)

 The range is a simple measure that shows how spread out the data are.

It is found by subtracting the **smallest value** from the **largest value** in the dataset.

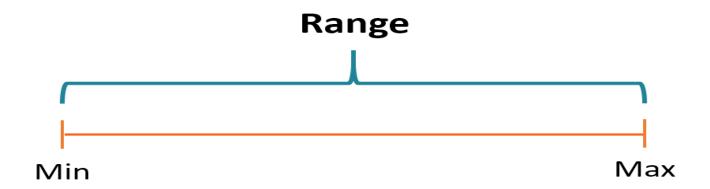
Formula:

Range = Highest Score - Lowest Score

Example:

Rhe scores: 40, 50, 50, 55, 60, 60, 60, 65, 70, 70, 75, 75, 80, 85, 90.

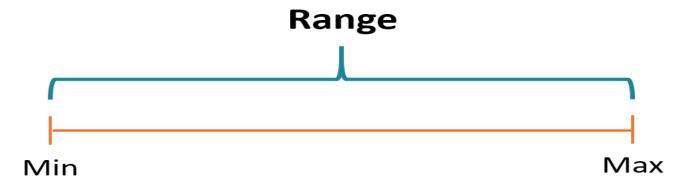
- Range = 90 40 = 50
- So, the range is **50**.
- It shows that the data values spread across 50 points.


The Range (ranj)

BUT YOU SHOULD BE CAREFUL!!

- The range is always POSITIVE ©
- Affected by extreme values!

Formula: Range= X_{max} - X_{min}


$$X_{max}$$
 = largest value X_{min} = smallest value

The Range (ranj)

Exmpl.:

- 1) Data: 59, 59, 59, 60, 61, 61, 61 ise Range=?
- 2) Data 2: 30, 40, 50, 60, 70, 80, 90 ise Range=?
- Bu iki dağılımda aritmetik ortalama ve medyanlar eşit olmasına karşın ranjları farklıdır.
- Dağılımın ranjı azaldıkça dağılımdaki puanlar birbirine yaklaşır, ranj arttıkça puanlar birbirinden uzaklaşır ya da puanlar arası fark artar.

Mean (Aritmetik Ortalama)

 The mean is the sum of all values divided by the total number of values. It represents the average of the data.

$$\overline{X} = \frac{X_1 + X_2 + X_3}{N}$$

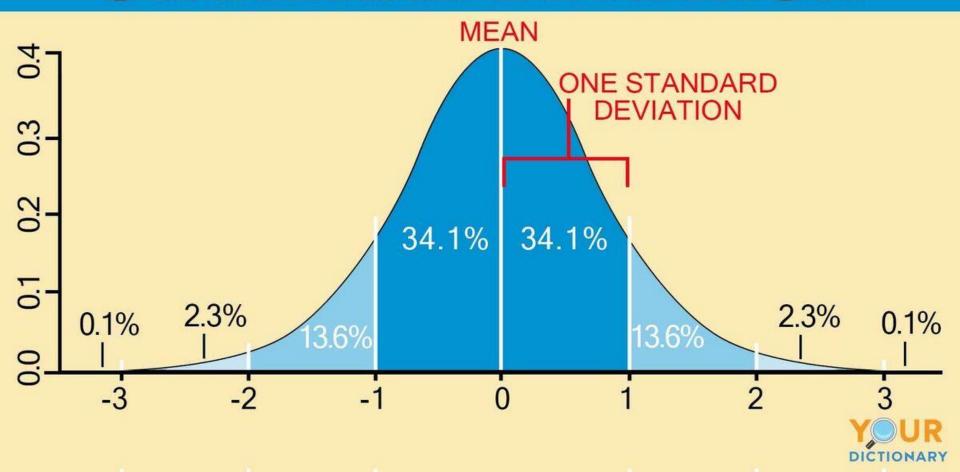
Formula:

$$X = \frac{\sum X}{N}$$

x̄: Mean

 $\sum X$:Sum of all data values

N: Number of observations


Standard Deviation (SD)

- The standard deviation is a measure that tells us how spread out or how much variation there is in a set of data values.
- In other words, it shows how far each value is from the MEAN (average).
- It is equal to the square root of the average of the squared differences of the scores from the mean (variance).
- Variance is equal to the square of the standard deviation.
- It does not accept negative values.
- If all values in the data group are the same, the SS is zero.

$$X$$
= each data value
 \bar{X} = sample mean
 n = sample size

$$S = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$

STANDARD DEVIATION

Median

- The **median** is the *middle value* when data are arranged in order (from smallest to largest).
- If there's an even number of values, the median is the average of the two middle values.

Example:

```
Scores = 4, 5, 7, 8, 10

\rightarrow Median = 7

Scores = 4, 5, 7, 8

\rightarrow Median = (5 + 7) / 2 = 6
```

Mode

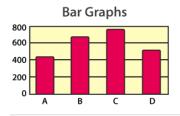
 The mode is the value that appears most frequently in the data.

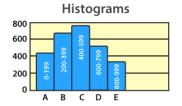
There can be:

- One mode → Unimodal
- Two modes → Bimodal
- More than two → Multimodal
- Example:

```
Scores = 4, 5, 7, 7, 8, 9

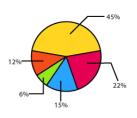
\rightarrow Mode = 7
```

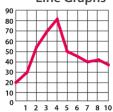

WHAT IF?


- Scores = 7, 8, 9, 9, 9, 6, 6, 10, 10, 11, 11, 14, 14, 18, 18, 19, 19, 19
- \rightarrow Mode = ???

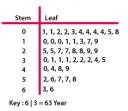
Graphical Representation of Data

TYPES OF GRAPHICAL REPRESENTATION

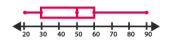



Frequency Table

Rulers of France		
Reign (Years)	Tally	Frequency
1-15	ווו זאע זאע זאע	18
16-30	וזאע זאע	11
31-45	וזאע	6
46-60	IIII	4
61-75	1	1

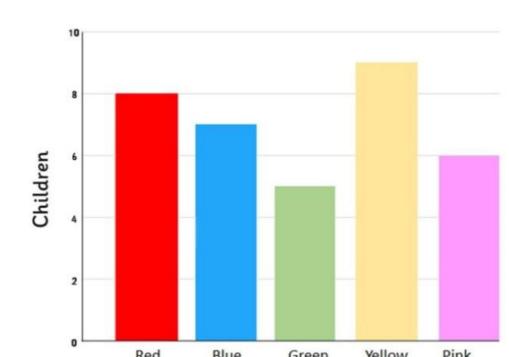

Circle Graph

Line Graphs


Stem and Leaf Plot

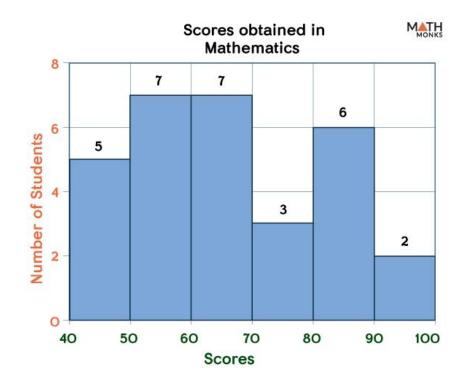
Line Plot

Box and Whisker Plot

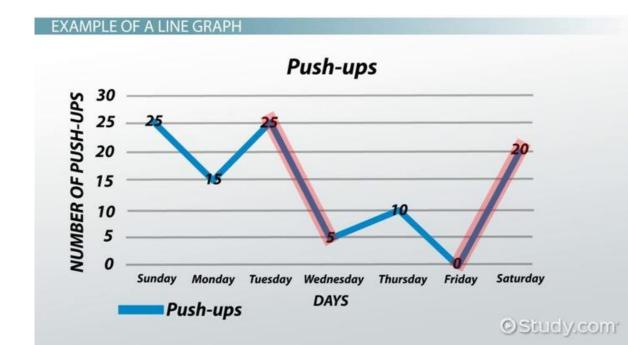


1. Bar Graph

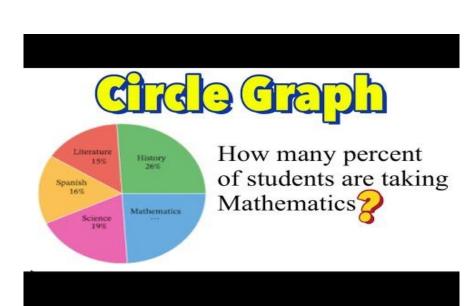
- Used to display categorical data.
- Each category is represented by a bar.
- The height of the bar shows frequency.
- There are spaces between bars.

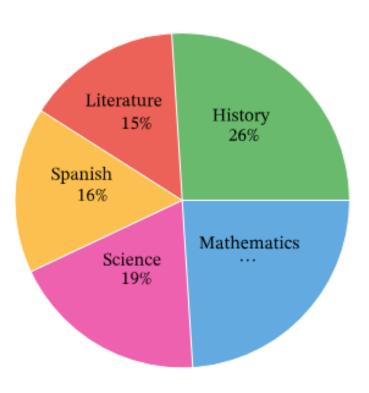

Example: Favorite colors of children

Favourite Colour


2. Histogram

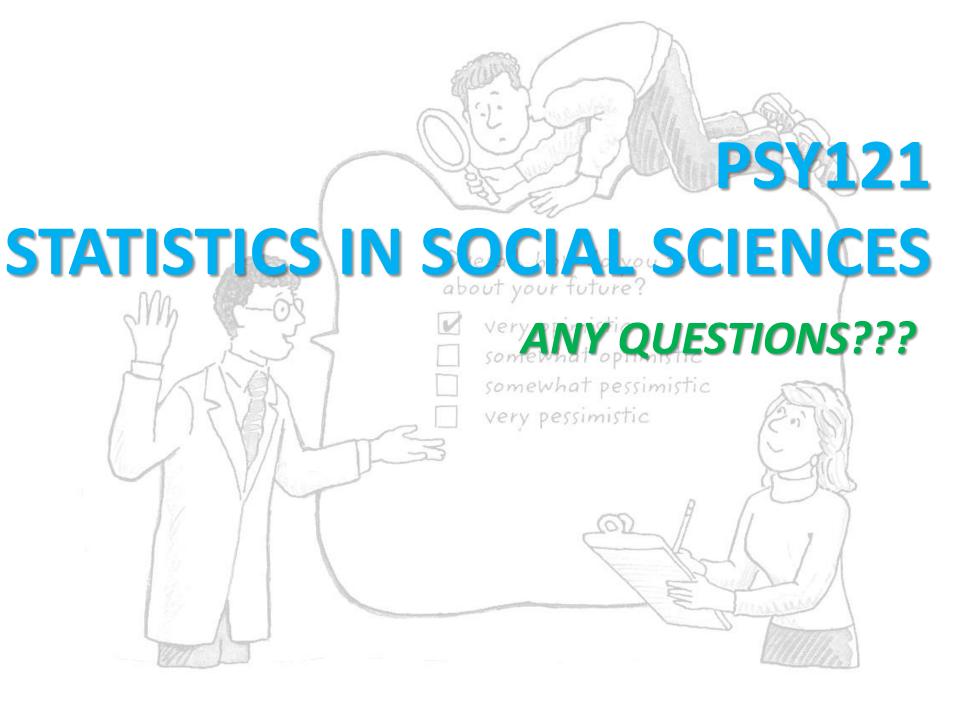
- Used for continuous numerical data.
- Bars are adjacent (no gaps).
- Shows frequency distribution of intervals.
- Example: Distribution of exam scores (40–49, 50–59, 60–69, 70–79).


3. Line Graph


- Used to display changes over time.
- Points are plotted and connected by lines.
- Useful for showing trends (increase/decrease).
- Example: Number of push-ups in a week ©

4. Circle Graph (Pie Chart)

- Used to show proportions or percentages of a whole.
- Circle represents 100% (360°).
- Each slice shows one category.
- Example: Literature— 15%, Spanish 40%



5. Steam and Leaf Plot

- A **stem-and-leaf plot** is a method of organizing numerical data so you can see both:
- the distribution (shape) of the data, and
- the exact values themselves.
- It's especially useful for small to medium-sized data sets.
- Each number is **split into two parts**:
- Stem: the leading digit(s)
- Leaf: the last digit

stem	leaf
0	1, 1, 2, 2, 3, 4, 4, 4, 4, 5, 8
1	0, 0, 0, 1, 1, 3, 7, 9
2	5, 5, 7, 7, 8, 8, 9, 9
3	0, 1, 1, 1, 2, 2, 2, 4, 5
4	0, 4, 8, 9
5	2, 6, 7, 7, 8
6	3, 6

Key: 6 | 3 = 63 years old

