[bookmark: _GoBack]
HETEROSKEDASTICITY AND AUTOCORRELATION

1. Heteroskedasticity

In this part, we use a dataset that can be used to illustrate the nature of heteroskedasticity. The dataset “abortionrates” comprises of 50 observations (the 50 American States) listing the following variables: 
State: the name of US state; 
Abortion: the abortion rate, measured as the number of abortions per 1000 women aged 15-44 in 1992; 
Religion:  % of the population being Catholic, Baptist, Evangelical or Mormon; 
Price: the average price charged for the procedure, in 1993; 
Laws: a dummy variable set = 1 if there are laws restricting minors from having abortions, and 0 otherwise; 
Funds: a dummy variable set = 1 if state support is available for abortions under some circumstances, and 0 otherwise;
Educ: % of the population of 25 years or older and with a high school degree in 1990; 
Income: per capita disposable income in 1992; 
Picket: % of the population that have experienced some form of picketing or resistance from demonstrators when trying to use the service. 

Have a look first at the summary statistics as they give you an idea of the data.

Now consider the regression model:

ABRi = β0 + β1Reli + β2Pi + β3Lawi + β4Fi + β5Edi + β6Inci + β7Pici +ui 

     Source |       SS       df       MS              Number of obs =      50
-------------+------------------------------           F(  7,    42) =    8.20
       Model |  2862.66338     7  408.951912           Prob > F      =  0.0000
    Residual |  2094.96246    42  49.8800585           R-squared     =  0.5774
-------------+------------------------------           Adj R-squared =  0.5070
       Total |  4957.62584    49  101.176038           Root MSE      =  7.0626

------------------------------------------------------------------------------
    abortion |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    religion |   .0200709   .0863805     0.23   0.817    -.1542521    .1943939
       price |  -.0423631   .0222232    -1.91   0.063    -.0872113    .0024851
        laws |  -.8731018   2.376566    -0.37   0.715    -5.669206    3.923003
       funds |   2.820003   2.783475     1.01   0.317    -2.797276    8.437282
        educ |  -.2872551   .1995545    -1.44   0.157    -.6899725    .1154622
      income |   .0024007   .0004552     5.27   0.000     .0014821    .0033193
      picket |  -.1168712   .0421799    -2.77   0.008    -.2019936   -.0317488
       _cons |   14.28396   15.07763     0.95   0.349    -16.14393    44.71185

 Now plot a scatter plot diagram of the squared residuals on the fitted values of ABR
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Now carry out a Breusch Pagan heteroskedasticity test: from the pull down menu choose postestimation=> specification, diagnostic etc => tests for heteroskedasticity. Launch and choose the BP 

Alternatively you can type directly
estat hettest

The command for White’s test is instead 
estat imtest, white


Breusch-Pagan / Cook-Weisberg test for heteroskedasticity 
         Ho: Constant variance
         Variables: fitted values of abortion

         chi2(1)      =     8.25
         Prob > chi2  =   0.0041

. estat imtest, white

White's test for Ho: homoskedasticity
         against Ha: unrestricted heteroskedasticity

         chi2(33)     =     32.10
         Prob > chi2  =    0.5116


The results indicate the existence of heteroskedasticity according to one but not the other test. Since White has low power as it uses many degrees of freedom we stick with the BP and re-run the regression using robust standard errors. This is an option in the regression window, or type:

regress abortion religion price laws funds educ income picket, vce(robust)

What difference do you notice between the two regressions?

2. Autocorrelation.

Now clear the data above using the command “clear” and open another dataset, advertisingdata.
The dataset comprises of 33 yearly observations on 
ADV: Total advertising expenditure, £m 1990 prices
SAL: Sales volume index 1985=100
PR: Relative price of advertising 1990=100, relative to the retail price index.

Since this is a time series data set we type the following two commands:
gen t = _n
tsset t

The first command creates a time variable t that runs from the first to the last of the observations. The second command tells STATA to treat this as a time series data set with time measured by this variable t.

Now estimate a log linear regression, so first of all create logs of all the variables in the data set by using the “gen” function.

      Source |       SS       df       MS              Number of obs =      33
-------------+------------------------------           F(  2,    30) =  418.62
       Model |  1.94935777     2  .974678885           Prob > F      =  0.0000
    Residual |  .069848695    30   .00232829           R-squared     =  0.9654
-------------+------------------------------           Adj R-squared =  0.9631
       Total |  2.01920647    32  .063100202           Root MSE      =  .04825

------------------------------------------------------------------------------
       lnadv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       lnsal |   1.184629   .0538989    21.98   0.000     1.074552    1.294705
        lnpr |  -.3049398   .1195513    -2.55   0.016    -.5490961   -.0607835
       _cons |  -4.540572    .405524   -11.20   0.000    -5.368763   -3.712382

If you plot the residuals of this regression against t you will see that for quite long periods of time they remain positive and only later they change. This might suggest positive autocorrelation:
[image: ]

We now test for this specifically using a Durbin Watson and a Breush-Godfrey tests.
The DW is in the postestimation commands or can be called by typing
estat dwatson
which gives the following result:

Durbin-Watson d-statistic( 3,    33) =  1.072887
The tables give us dL = 1.32 and dU = 1.58 so we can already conclude that the null of no autocorrelation is rejected and the data displays positive autocorrelation.

Similarly with the Breusch Godfrey test:
estat bgodfrey

Breusch-Godfrey LM test for autocorrelation
---------------------------------------------------------------------------
    lags(p)  |          chi2               df                 Prob > chi2
-------------+-------------------------------------------------------------
       1     |          6.897               1                   0.0086

Which clearly indicates that we are rejecting the null and finds autocorrelation.
In the options you can choose how many lags to introduce – we will do this in class. 

2.1 Adjusting for autocorrelation
I now want you to calculate the coefficient of autocorrelation from the d statistic: since we know that 
d=2(1-) 
then we can calculate 
=1-d/2 = 0.465 
and adjust the equation using the difference method seen in class. The relevant commands are the following:
 gen rlnadv = lnadv*0.465

 gen rlns=lns*0.465

 gen rlnp = lnp*0.465

this multiplies times  all the variables. Now we create the differenced variables values using the lag operator L:
 gen dlna= lnadv-L.rlnadv   (this means lnAt- lnAt-1)

. gen dlns = lns-L.rlns

. gen dlnp=lnp-L.rlnp

And finally we regress:

regress dlna dlns dlnp

has serial correlation disappeared? Yes (check).


There might be cases where you wanted to use the Newey West standard errors; these are calculated using the following command:
newey lnadv lnsal lnpr, lag(1)
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